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Splitting-up Technique and Cubic Spline
Approximations For Solving Modified Coupled
Burgers' Equations
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Abstract

In this paper, a finite difference scheme based on the splitting-up technique and cubic spline approximations is
developed for solving modified coupled Burgers' equations. The accuracy and stability of the scheme have been
analyzed. It is found that the scheme is of first-order accuracy in time and second-order accuracy in space direction
and is unconditionally stable. The numerical results are obtained with severe/moderate gradients in the initial and
boundary conditions and the steady state solutions are plotted for different values of given parameters. It is concluded
that the resulting scheme produces satisfactory results, even in the case of very severe gradient in the solution, and is
applicable at both low and high Reynolds numbers. Also, the general nature of the proposed scheme provides a wider
application in the solution of non-linear problems arising in mechanics and other areas.
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Introduction:

In the last few years, the study of Burgers'
equation has been the object of considerable
attention. This equation exhibits great similarity
with the Navier-Stokes equations, so it is often
arises in the mathematical modeling used to
solve problems in fluid dynamics involving
turbulence [4], and also arises in the approximate
theory of flow through a shock wave propagation
in a viscous fluid [6]. In one and two space
dimensions, Burgers' equations are, respectively,
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where A is the kinematic viscosity.
Two-dimensional Burgers' equations are an
appropriate test case because the equations
structure are similar to that of the incompressible
fluid flow momentum equations. This system of
equations is used in models for the study of
hydrodynamical turbulence and wave processes
in a non-linear thermoelastic medium. These
equations have also been used as model equation
for comparing the accuracy of different
computational algorithms developed for non-
linear problems by several authors (see, for
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example, Arminjon and Beauchamp [1], Iyenger
and Pillai [8], Jain, Shankar & Singh [9], Rubin
and Graves [11], Bassaif [5], Soliman [13],
Manoj and Sapna [10] , Sarboland and Aminataei
[14] etc., and the references cited therein).
Difficulties have been experienced in the past in
the numerical solution of Burgers' equation for
small values of the parameter V. During recent
years, many authors have used a variety of
numerical techniques in attempting to solve the
equation for small values of Vv, which
correspond to steep fronts in the propagation of
dynamic wave forms. Rubin and Graves [11]
have wused spline function technique and
quasilinearization for the numerical solution of
Burgers' equation in one space dimension at low
Reynolds numbers. For two-dimensional
Burgers' equations, they have proposed a Spline-
Alternating-Direction-Implicit (SADI) method
for solving the problem at low Reynolds
numbers. An extension of this method for
solving coupled Burgers' equations gives rise to a
complicated numerical scheme which is less
efficient compared to the method proposed in the
present paper, which is applicable at both low
and high Reynolds numbers.

It is worth mentioning here that, the study of
non-linear  higher-order partial differential
equations in two and three space dimensions will
provide the most interesting and rewarding
problems for computational mathematics of the
future.  Moreover, challenging non-linear
problems involve high discontinuity and
therefore one should choose an appropriate
model to take care of non-linearity with initial
and boundary conditions having internal or
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boundary gradients. This will make them more
representative of real fluid dynamic problems.
Keeping this in view, in the present paper, we
have considered the numerical solution of
"Modified Coupled Burgers' Equations" in which
a non-linear source term is also included. These
equations are presented in the next Section. The
detailed plan of this paper is as follows:

In Section 2, the modified coupled Burgers'
equations are given. Using a five-step splitting-
up technique and cubic spline approximations,
the finite difference scheme is derived. In
Section 3, the stability and accuracy analysis of
the sheme are analyzed. It is found that the
scheme is unconditionally stable and of first-
order accuracy with respect to time and second-
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order accuracy with respect to space direction. In
Section 4, the numerical results and discussion
are discussed. Finally, the conclusion of this
study is reported in Section 5. It is concluded
that, the scheme is computationally efficient and
produces satisfactory results in the ease of very
severe gradients in the solutions, and it is
applicable at both low and high Reynolds
numbers.

Differential Equations and Numerical Scheme
In this Section, the modified coupled Burgers'

equations, under consideration, are given as
follows:
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subject to the initial conditions:

u(x, y,0)=1,(x,»); (x,y) € D;
v(x,1,0)= f,(x,y); (x,y) €D,

and the boundary conditions:

u(x, y,0) = (X, y,0); (x,y)€0D: t >0
v(x, y,0) = g,(x, »,1); (x,y)€AD; 1 >0,
where D = {(x,y)): 0<x,y< 1}, oD is its
u(x,y,t)and v(x,y,t)are the
velocity components to be determined and

boundary,

fi5/5,8,,8,are known functions. Re is the

Reynolds number often arises in the
mathematical modeling used to solve problems
in fluid dynamics involving turbulence, the
reciprocal of which is considered to be the
kinematic viscosity. Furthermore, the discrete
approximation for the velocity components

and Vat the mesh point
(x; =ih,y; = jh,t =nk)are denoted by
U’ and V" respectively

i,j i,j>
(i,j=0,12,.,N;n=0,2,..), where h is
the mesh step in direction X and y, and k is the

increment in time.
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By using the splitting-up technique and cubic
spline approximations, the aforementioned
modified coupled Burgers' equations, given by
(3), can be solved numerically as follows:
We split the first equation of (3), by using a five-
time-step splitting technique, in the form:
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In equations (4) and (5) the space derivatives are

approximated by the first-order derivative of a
cuble spline function s, (x) interpolating U,
(i,j=0,12,..,N)at n and (n+1/5) time
level, and the time derivatives are approximated

by the forward differences. Hence, equation (4)
becomes
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where 0 <&, <1 and m;, denotes the first-order derivative of the cubic spline function s, (x).

Now, from the condition of continuity of the cubic spline function s, (x) ,we have the following spline
relation [2]:

+4m, +m, =2—lh5in’fj, (10)

l+l Vi

where 5U" =U’

i+l,j

-U;!

i—l,j "
By making use of (10),we eliminate the space derivatives from equation (9), and after some mathematical
simplifications, we obtain the finite difference approximation to equation (4) in the form:

1 n n - h n n+ n rh n
{1+6U,,53(Ul.7j)1 29U”5x} s —ur,)= ~SULSUL. (11)
where ¥ =k/h” and 5szZ' =U.,, 20, +U, ;.

Similarly, the finite difference approximation to equation (5), at n+2/5and n+1/5 time levels, will
be.

{l_i_él/l,nlévxz(l/qu])l_i_r_zhel/ 5} ( n+2/5 Un+1/5)__r_2hVn5Un (12)

where 0< 6, <1.
Further, in equations (6) and (7), the space derivatives are approximated by the second-order derivative of
the cubic spline function S, (x) interpolating Ul."lj (i,j=0,12,...,N)at n+3/5and n+2/5time

levels, and the time derivatives are approximated by the forward differences. Hence, equation (6) takes
the form:

1
z(U:’;M _U:;z/s) _ { Mn+3/5 +(1-6, )MZ;Z/S }, (13)
where 0<@; <1 and M, denotes the second-order derivative of the cubic spline function S, (x).

From the condition of continuity, we are taking the following spline relation [2]:

M}, +4M] + M —iz@?U;jj. (14)

i-1,7

Using (14), we eliminate the space derivatives from equation (13), and after simplifying, we obtain the
following finite difference approximation to equation (6):

1 ro, r
1+ - 52 Un+3/5 U'rH'—Z/S :_52U<},H»—2/5 . 15
TR .

In the same manner we can obtain the finite difference approximation to equation (7), at n+4/5 and
n+3/5 time levels, as follows:

1+(l_ 7’9 )52 (Uin;r4/5 Un+3/5) 52Un+3/5 (16)
6 Re " R

C

where 0 <6, <1. For equation (8), we can write the finite difference approximation, at 7+ 1and

n+ 4/ 5 time levels, in the form.
n+l n+4/5N _ yrn+dls n+4/5 n+4/5 n+a/52 172
—(U —UISY = U aRe U U + (7 a7
F ollowmg the above same procedures, we can obtain the corresponding finite difference approximations,
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for the second equation of (3), in the following forms:

{1+1V”52( ")+ heV" }(Vj;*“s Vi) =- hV”5V" (18)

Lj7y Lj7y LTy L)

1+ U (Ul /)7 2}19 Un }(VnJrZ/S n+1/5) — _F_;Un 5 Vn+1/5 , (19)

i,j x i,j iL,j7x"0,j

6 Re b Re

1 1 52}(1/’11;—4/5 _ I/iil;—?y/S) — é5jufj3/5 (21)

1 =—0U
{1 }(V}HM n+2/5)_ : 5y2 i,jz/s’ 20
n+ n+ n+ n+ IVH | =
V 1 V 4/5) I/i,j 4/5—2R6Ll-,j 4/5{( i,j4/5)2 ( i,j 4/5)2} ’ 22)

Thus, the above ten equations (11), (12), (15), (16), (17) and (18) to (22) are the multi-step finite
difference formulation of the modified coupled Burgers' equations, given by (3) .
Now, the intermediate values included in equations (11), (12), (15) and (16) have been taken as:

urs =(1-"yn 5 Yo i=0,N; j=012,..N,
i,j 2 X i,j

Unt = 1_ﬁV " JUWS j=0,N; i=0,2,..,N,
I, 2 1,]

Ul.’f‘]+.3/5 = 1_L53jUi'j;2/5 i=0,N; j=012,.,N,

Re

n+4/5 o n+3/5 . L

Ui,j = 1_R_e5iji’j jZO,N, 1—0,1,2,...,N,

and the intermediate values included in equation (18)- (21) have been taken as

v = (1—r—th",5§j j=0,N; i=0,12,.,N,
0N (1—?Ul", XJVJ;”S i=0,N; j=012,.N,
n+3/5:(1+RLe5y2jI/if’]T2/5 j=0,N; i=012,.,N,
n+4/5=(1+é§iji?3/5 i=0,N; j=0,12,.,N.

We replace 0, and 55 at the lower boundary i =0 (2A, —Azx) and Azx, respectively, and at the
upper boundary i = N, 0 and 53 are replaced by (2V | —Vi) and Vi , respectively. Similarly, we

can write down corresponding expressions for O y and O yz . Here, the forward and backward operators are
defined, respectively, as follows:

no__ n n

A U Uz+1 J _Ui,_/ >

n o _ gy _grn
vai,j _Ui,j Ui—l,j
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Stability and Accuracy Analysis of the Scheme:
In order to analyze the stability and accuracy of the scheme, we eliminate the intermediate values, and by
performing the necessary simplifications, the scheme finally takes the form:

W =0OWw"+H, (23)
where
Ui’?/’ Dl 0 Cl
w" = Ol 0= and H = ol
Vi 0 D, :

in which Cand C, are given by:

/2

C =[l+k(1-2Re)] [4*+B*]" 4,
C, =[l+k(1-2Re)] [42+B]°B

A= 1—ﬁU"5 1=yns | (14 s2 1+—52j ,
2 2 T Re Re a7
B=[1-"yr s 1—ﬁU"5 1+L52) (1+L53)Viv.
2 W 2 Re ’ Re * ) ™

In the amplification matrix (J, D, and D, are given by

1 n 2 n -1 rh _
{1{6_(9 j HHU { 5w+ @ 1)@}}

1 L
{1{6_(9 ] Hlm,&a}(m @-D%}}

where

D, =
{1{1—”92)53} {1+U;“ { s U +@05 }}
6 Re 7
{H(l—re“jés } {1+V { SIW) T+ Lh@a‘ }}
6 Re e
1 r 2 n\-1 Lh _
{1+(6—Re(92—1j5} {1+V { 0,5+ (6 1)@}
{1{1—(9 —1 } {1+U” 5j(U,.”,.)1+”h(93—1)5x}
D, = 6 : 2 :

1 l"e n n\— rh
{”(6‘1{355} {“Vw‘[ﬁf 7" *ﬁfﬂ}
w14 LT )s2 1+U"{ 5§(U,A"A>1+”’7936X}

6 Re 7 2

By suing the von Neumann criterion of stability [12], it is found that the diagonal elements of the

amplification matrix Q have values less than unity for 6, >1/2, i=1,2,3,4, and the scheme is
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unconditionally stable for 491 >1/2. 1t has an accuracy of first order with respect to time and second

order with respect to space.

Numerical Results and Discussion :
In two-dimensional steady solutions of Burgers' equations, it is convenient to construct solutions of

Vet =0, (24)
that is, the steady part of the equation V, =V, tV,,.

Subsequently, by making use of the Hopf-Cole transformations, in two space dimensions [3,6], given by

u= —ig(lnz// __2y

E

Re ox Re

2 0 2 v, 25
v:———(]_nl//):—— - s ( )

Re oy Re v

we get exact solutions of the two-dimensional Burgers' equations. To generate an exact solutions with a
shock-like structure, the following general solution of equation (24) suggests itself [ 7],

Y=a,tax+a,y+axy+a, {exp(a)) + exp(—a))}cos(ay) ,
where a,,a,,a,a;,a,,0and X can be chosen to give specific features to the flow, and

w=a0a(x—x,). The application of the transformations (25) produces the following steady state

solutions of the modified coupled Burgers' equations, given by (3).

2 a+ay+aa,jep(e)—exp(-o)jcos(ay)
Re a, +a,x+a,y+axy +a, exp(w) +exp(-o)sin(ay)

L2 ay+ay-—aa,lep(e)—exp(-o)jsin(ay) on

Re a,+a,x+a,y+a,xy+a, exp(w)+exp(—w)cos(ay) '

u=- (26)

The modified coupled Burgers' equations (3) are solved by utilizing the aforementioned multi-step finite
difference scheme, developed in Section 2, with Dirichlet boundary conditions given by (26) and (27) for

appropriate choices of the parameters a,,4a,,d, a,,a,,a and X, and plotted.

Figures 1 and 2 show the plotting of # and Vv , respectively, for the following values of the parameters:

a,=a,=1.1013; a,=a,=0; a,=1.0;
a=0.5; x,=10; Re=1.0,

with mesh sizes 4£=1/20 and »=1/2. This is the steady state solution of equations (3), which is
achieved at time ¢ =0.10 sec. It is clear from these figures that initial discontinuity is there in one
corner for U, whereas for v a moderate internal gradient is present throughout the solution domain. By

varying the mesh sizes and parameter 7 =k / h? , we observed that the results remain with the limit of
accuracy of the method.
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Figures 3 and 4 show the results for the values of the parameters given by:
a,=a, =110.13; a,=a,=0; a,=1.0;
a=2.0;, x,=1.0; Re=1.0.
From these figures it is clear that there is a moderate internal gradient for # , whereas for v there is a
cusp type behavior at one end of the solution. Here, the steady state solution is achieved at t=10.15 sec.
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Figures 5 and 6 show the behavior of the solution for the following values of the parameters:
a, =a, =1.1013x10"; a, =a, =0; a, =1.0;
a=18.0; x,=1.0; Re=500.
This behavior is a moderate boundary gradient. In this case the steady state solution is achieved at

t=0.083 sec.
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Conclusion:

Burgers' equation was chosen since it is widely
used in the literature as a model to test
computational schemes intended for fluid flow
problems that exhibit shocks (or severe
gradients). At the present paper, the modified
coupled Burgers' equations have been studied
numerically by developing a multi-step finite
difference scheme based on the splitting-up
technique and cubic spline approximations. The
stability and accuracy of the scheme are
analyzed. It is found that the scheme is
unconditionally stable and has an accuracy of
first-order with respect to time and second-order
with respect to space direction. The numerical

50

results are obtained with severe / moderate
gradients in the initial and boundary conditions.
The exact steady state solutions for # and Vv
are also plotted with the help of Maple 13
software by taking difference values of the
parameters. It is concluded that the scheme is
computationally  efficient and  produces
satisfactory results even in the case of very
severe gradient in the solution, and is applicable
at both low and high Reynolds numbers. The
proposed scheme is of a general nature which
provides a wider application in the solution of
non-linear problems arising in mechanics and
other areas.
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